
S5 File: A comparison of transfer learning methods

k-NN TL versus SVM TL

We compared the macro- and class-F1 scores for the k-NN transfer learning (TL) and SVM TL
methods on all datasets and found no single method outperformed the other, however, both
methods outperformed using a classifier on one source alone. At the 0.01 significance level k-NN
TL performed better overall than SVM TL for the callus dataset (p = 4e−6) and SVM TL performs
better than the k-NN TL method on the mouse dataset (p = 6e−6). We also found that for the
human, fly and roots datasets there was no significant difference in the performance between the
two methods (p = 0.07, p = 0.4, p = 0.01, for each dataset respectively). Interestingly, the class-F1
scores showed that each TL method performed differently at the organelle level. For example, for
the mouse dataset we found 4 of the 10 sub-cellular classes used in classifier creation performed
significantly better with the k-NN TL, whereas another 4 of the sub-cellular classes performed
better with SVM TL. For the 2 remaining classes both methods performed equally well. We see
the same trend for all other datasets wherein no one method performs better on all sub-cellular
classes than the other.
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S5 File. Fig. A. Macro- and class-F1 results for the mouse dataset. Box plots displaying the
macro-F1 (A) and class-F1 (B) scores for the k-NN transfer learning (TL) and SVM TL experiments over
100 test partitions on the mouse stem cell dataset.

P value

40S ribosome 4e-12
60S ribosome 3e-07

Cytosol 3e-10
Endoplasmic reticulum 4e-05

Lysosome 3e-19
Mitochondrion 7e-10

Nucleus - Chromatin 1e-01
Nucleus - Non-chromatin 3e-01

Plasma membrane 1e-04
Proteasome 6e-08

S5 File. Table A. T-test results for the mouse dataset P values from an unpaired two-sample
t-test (with unequal variance) used to determine if the populations means between the k-NN TL and
SVM TL methods are significantly different from one another for each sub-cellular class in the mouse
stem cell dataset.
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S5 File. Fig. B. Macro- and class-F1 results for the human dataset Box plots displaying the
macro-F1 (A) and class-F1 (B) scores for the k-NN transfer learning (TL) and SVM TL experiments over
100 test partitions on the human LOPIT experiment

p-value

Cytosol 7e-01
Cytosol/Nucleus 8e-01

ER 5e-32
Golgi 6e-13

Lysosome 3e-02
Mitochondrion 2e-21

Nucleus 2e-06
PM 6e-18

Ribosome 40S 5e-02
Ribosome 60S 9e-01

S5 File. Table B. T-test results for the human dataset P values from an unpaired two-sample
t-test (with unequal variance) used to determine if the populations means between the k-NN TL and
SVM TL methods are significantly different from one another for each sub-cellular class in the human
dataset.
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S5 File. Fig. C. Macro- and class-F1 results for the plant callus dataset. Box plots displaying
the macro-F1 (A) and class-F1 (B) scores for the k-NN transfer learning (TL) and SVM TL experiments
over 100 test partitions on the plant callus dataset.

p-value

ER lumen 1e-01
ER membrane 3e-02

Golgi 4e-08
Mitochondrion 7e-02

Plastid 1e-02
PM 2e-05

Ribosome 5e-01
TGN 1e-01

vacuole 8e-02

S5 File. Table C. P values from an unpaired two-sample t-test (with unequal variance) used to
determine if the populations means between the k-NN TL and SVM TL methods are significantly different
from one another for each sub-cellular class in the plant callus dataset.
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S5 File. Fig. D. Macro- and class-F1 results for the plants roots dataset. Box plots displaying
the macro-F1 (A) and class-F1 (B) scores for the k-NN transfer learning (TL) and SVM TL experiments
over 100 test partitions on the Arabidopsis thaliana roots dataset.

p-value

ER/Vacuole 1e-01
GA/Chloroplast 1e-13

Mitochondrion 7e-04
PM 1e-22

TGN 6e-13

S5 File. Table D. T-test results for the plant roots dataset P values from an unpaired two-
sample t-test (with unequal variance) used to determine if the populations means between the k-NN TL
and SVM TL methods are significantly different from one another for each sub-cellular class in the plant
roots dataset.
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S5 File. Fig. E. Macro- and class-F1 results for the fly dataset. Box plots displaying the
macro-F1 (A) and class-F1 (B) scores for the k-NN transfer learning (TL) and SVM TL experiments over
100 test partitions on the fly dataset.

p-value

ER 8e-01
Golgi 8e-15

mitochondrion 1e-01
Nucleus 1e-01

PM 6e-01
Proteasome 6e-05

Ribosome 40S 2e-05
Ribosome 60S 9e-16

S5 File. Table E. T-test results for the fly dataset P values from an unpaired two-sample t-test
(with unequal variance) used to determine if the populations means between the k-NN TL and SVM TL
methods are significantly different from one another for each sub-cellular class in the fly dataset.
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k-NN transfer learning: Wu’s original method

In Wu and Dietterich’s original application of transfer learning (TL) [1] the k-NN TL classifier
only allowed weighting by data source and not on a data source and class-by-class basis. We have
extended the usability of the method by incorporating a multi-class multi-data weighting schema
to allow the integration of heterogeneous data types.

We compared Wu’s k-NN TL method with own multi-class multi-data k-NN TL method (S5
File Figure F) (from herein we refer to these two methods as Wu and Breckels, for each TL
method respectively). As described in the methods section of the manuscript to assess classifier
performance we partitioned our labelled data into training and testing sets, and used the testing
sets to assess the strength of our classifiers. Parameter optimisation was conducted on the labelled
training data using 100 rounds of stratified 80/20 partitioning, in conjunction with 5-fold cross-
validation in order to estimate the k-NN TL weights via a grid search. Comparing the macro-F1
scores at the 0.01 significance level we found that as per the Breckels method, Wu’s method was
better than using primary data alone for all datasets except the callus dataset (mouse p = 2e−10,
human p = 9e−5, callus p = 0.02, roots p = 9e−10, fly p = 6e−6). We found that the Breckels k-NN
TL classifier outperformed Wu’s method for the mouse (p = 4e−4) and roots dataset (p = 4e−3).
Both classifiers are implemented in the pRoloc package [2] in Bioconductor [3].
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S5 File. Fig. F. A comparison of k-NN methods (Breckels, Wu and the baseline k-NN).
Boxplots, displaying the estimated generalisation performance over 100 test partitions for the (i) Breckels’
k-NN TL, (ii) Wu’s k-NN TL, (iii) primary data only, and (iv) auxiliary data only, for each dataset.

Is is important to note that in two of the above cases, namely callus and fly, learning from
auxiliary data has either limited (fly), or no effect at all (callus) because the resolution in the
primary data is already excellent (the primary F1 scores are close to 1). Neither Wu nor Breckels
algorithms can bring much using TL for these cases, and hence the comparison of Wu’s and
Breckel’s k-NN are not particularly telling here. For the case where improvement is possible (fly),
both algorithms result in an increase in performance, but scope for improvement is so limited
that it is impossible to separate them. If we consider the other datasets (mouse, human and
roots), where integration of primary and auxiliary data is most useful, our k-NN TL algorithm
outperforms Wu’s original algorithm in 2 out of 3 cases (mouse and roots).

In addition, we found that our SVM TL algorithm outperforms Wu’s k-NN algorithm (S5 File
Fig. G) in all 3 cases: mouse (p = 7e−13), roots (p = 7e−8) and human (p = 4e−3).
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S5 File. Fig. G. A comparison of all TL classifiers (SVM TL and the k-NN TL classifiers.)
Boxplots, displaying the estimated generalisation performance over 100 test partitions for (i) Breckels’
SVM TL, (ii) Breckels’ k-NN TL, (ii) Wu’s k-NN TL, for each dataset.

Negative transfer

Negative transfer is a paradigm in machine learning used to describe the situation when (often
irrelevant) information is transferred from an auxiliary source which results in a decrease in the
performance of the learner. A major hurdle that one faces in developing successful transfer learning
methods is how to minimise the negative transfer paradigm [4]. In a review of transfer learning [5]
Pan and Yang provide an introduction to transfer learning in which they address three key issues
(1) what to transfer, (2) how to transfer, (3) when to transfer, and how these relate to negative
transfer and similarity between source/target domains and tasks. Olivas et al [4] also provide
insight on to how to avoid negative transfer and choose source tasks wisely. One such way is to
manually select what to transfer, which is possible with the two TL methods presented here by
manually setting the class-weights in the k-NN TL classifier and data-specific SVM parameters in
the SVM TL classifier.

We observe some negative transfer events on a class-specific basis. For example, from examining
the class-F1 scores for the mouse dataset we see from Fig. 2 (bottom) in the main body of the
manuscript, k-NN TL does not perform as well for the lysosome to using primary alone. We
find however that a t-test shows that this difference is not significant at 0.01 (p = 0.07). We
observe the converse for the proteasome, in terms of auxiliary performance, wherein adding primary
information decreases the performance of the auxiliary data alone (p = 6e−3, for combined versus
auxiliary). As mentioned above, one of the advantages of the k-NN TL algorithm is the ability
to set the weights for these organelles manually, so we can limit the cases where negative transfer
may happen.

We have found in previous tests that straightforward concatenation of the primary and auxiliary
data i.e. where no data is weighted, for many cases fails and indeed we see strong negative-
transfer effects. Following our usual protocol for testing classifier performance (as detailed in the
methods), the resultant 100 macro-F1 scores from straightforward concatenation was compared to
those obtained from training on primary alone and to training on auxiliary alone (S5 File Figure
H). We find that simple concatenation of the primary and auxiliary data results in a significant
decrease in classifier performance for some datasets compared to using just primary data alone,
as seen in, for example, the human (p = 2e−20) and callus (p = 5e−50) datasets.
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S5 File. Fig. H. Negative transfer effects from straightforward data combination. Boxplots
displaying the macro F1 scores over 100 test partitions for the (i) k-NN classifier, (ii) straightforward
concatenation of primary and auxiliary data (GO) sources, (iii) primary data only, and (iv) auxiliary
data only, for each dataset.
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